## WHERE IS HYPERKALEMIA DIAGNOSED AND DOES IT MATTER? RESULTS FROM A LARGE EMR NETWORK IN THE US

Seth Kuranz<sup>1</sup>, Timothy J Carroll<sup>1</sup>, Jordan Donovan<sup>1</sup>, Laura Evans<sup>1</sup>, Jeffrey Horrigan<sup>1</sup> <sup>1</sup>TriNetX, Inc., Cambridge, MA, United States

## **OBJECTIVES**

The aims of this analysis were to describe health outcomes and treatment-related differences among incident hyperkalemia (HK) patients diagnosed in ambulatory, inpatient, and emergency room (ER) settings.

### **METHODS**

Patients with an incident hyperkalemia diagnosis, confirmed by serum potassium (K)  $\geq$ 5.0 mmol/L, following a kidney disease diagnosis between 2010-2018 were identified using the TriNetX platform, a U.S.-based electronic medical record network (Figure 1).

Treatment administered on the same day, health outcomes within 30-days, and retesting of K within 30-days and 1-year following the incident diagnosis of HK were compared using chi-square tests and Kaplan-Meier curves across the setting of the diagnosis: ambulatory, inpatient and ER.





# TriNetX

#### All criteria were defined by ICD-9/10, LOINC, CPT, and RxNorm codes.



## RESULTS

The mean age of patients was 68 in inpatient (N=8,875), 66 in ambulatory (N=3,471), and 67 in ER (N=1,906) care settings. ER patients were more likely to experience cardiovascular complications in the 30-days following diagnosis. Although ambulatory and ER patients had a lower probability of a second K test within the first 30 days, most patients were retested within a year of the incident HK diagnosis.

**Figure 2. Outcomes 30-days after index HK event** p<0.01 for all comparisons based on chi-square tests



|                                     | Inpatient |    | Ambulatory |    | ER    |    |          |
|-------------------------------------|-----------|----|------------|----|-------|----|----------|
|                                     | Ν         | %  | Ν          | %  | Ν     | %  |          |
| Total N                             | 8,675     |    | 3,471      |    | 1,906 |    |          |
| Female                              | 4,309     | 50 | 1,706      | 49 | 923   | 48 | p = 0.76 |
| White                               | 4,924     | 57 | 2,249      | 65 | 194   | 10 | p < 0.01 |
| Black or African<br>American        | 1,990     | 23 | 587        | 17 | 1,488 | 78 | p < 0.01 |
| Hispanic or Latino                  | 280       | 3  | 236        | 7  | 191   | 10 | p < 0.01 |
| Essential (primary)<br>hypertension | 5,735     | 66 | 2,603      | 75 | 1,503 | 79 | p < 0.01 |
| Hyperlipidemia,<br>unspecified      | 4,943     | 57 | 1,75       | 50 | 1,010 | 53 | p < 0.01 |
| Type 2 diabetes<br>mellitus         | 4,856     | 56 | 1,609      | 46 | 945   | 50 | p < 0.01 |
| Hypertensive chronic kidney disease | 4,807     | 55 | 1,460      | 42 | 1,017 | 53 | p < 0.01 |
| Ischemic heart<br>diseases          | 4,116     | 47 | 1,253      | 36 | 811   | 43 | p < 0.01 |
| Other hyperlipidemia                | 3,061     | 35 | 1,365      | 39 | 808   | 42 | p < 0.01 |
| Heart failure                       | 3,950     | 46 | 997        | 29 | 702   | 37 | p < 0.01 |
| Atrial fibrillation and flutter     | 2,509     | 29 | 681        | 20 | 522   | 27 | p < 0.01 |
| Diseases of liver                   | 1,597     | 18 | 581        | 17 | 400   | 21 | p < 0.01 |
| Cerebrovascular<br>diseases         | 1,620     | 19 | 555        | 16 | 287   | 15 | p < 0.01 |
| Pure<br>hypercholesterolemia        | 1,345     | 16 | 476        | 14 | 346   | 18 | p < 0.01 |
| Type 1 diabetes<br>mellitus         | 787       | 9  | 367        | 11 | 233   | 12 | p < 0.01 |
| Mixed hyperlipidemia                | 356       | 4  | 252        | 7  | 199   | 10 | p < 0.01 |
| Antimicrobials                      | 6,517     | 75 | 2,369      | 68 | 1,077 | 57 | p < 0.01 |
| Beta blockers                       | 5,114     | 59 | 1,972      | 57 | 1,349 | 71 | p < 0.01 |
| Diuretics                           | 4,668     | 54 | 1,932      | 56 | 968   | 51 | p = 0.07 |
| Antilipemic agents                  | 3,744     | 43 | 1,684      | 49 | 821   | 43 | p < 0.01 |
| Antiarrhythmics                     | 3,216     | 37 | 1,610      | 46 | 711   | 37 | p < 0.01 |
| Calcium channel<br>blockers         | 3,264     | 38 | 1,330      | 38 | 619   | 32 | p < 0.01 |
| Ace inhibitors                      | 2,563     | 30 | 1,317      | 38 | 647   | 34 | p < 0.01 |
| Antihypertensives                   | 3,104     | 36 | 1,033      | 30 | 883   | 46 | p < 0.01 |
| Antianginals                        | 1,972     | 23 | 712        | 21 | 496   | 26 | p < 0.01 |
| Angiotensin II inhibitors           | 1,123     | 13 | 593        | 17 | 260   | 14 | p < 0.01 |
| Alpha blockers                      | 1,039     | 12 | 394        | 11 | 225   | 12 | p = 0.66 |
| Other cardiovascular agents         | 426       | 5  | 182        | 5  | 84    | 4  | p = 0.42 |

#### **Figure 3. Treatments administered same day as index HK event** p<0.01 for all comparisons based on chi-square tests



#### Figure 4. Retest of K within first 30-days of index HK event

Table 1. Baseline characteristics by setting of care



#### Figure 5. Retest of K within first year of index HK event

## CONCLUSIONS

Treatments and outcomes differed for patients who experienced a hyperkalemia event in an inpatient, ambulatory, or ER care setting. Novel treatments for hyperkalemia require a chronic diagnosis, which entails at least two K tests. Previous studies show retesting is uncommon, especially in primary care settings. However most patients in the US receive a second K test within a year of the incident hyperkalemia event, regardless of care setting.

#### ISPOR Europe 2019 | Copenhagen, Denmark